Anesthesia: Essays and Researches  Login  | Users Online: 151 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Home | About us | Editorial board | Ahead of print | Search | Current Issue | Archives | Submit article | Instructions | Copyright form | Subscribe | Advertise | Contacts


 
Table of Contents  
ORIGINAL ARTICLE
Year : 2022  |  Volume : 16  |  Issue : 1  |  Page : 49-53  

Carotid artery blood flow changes associated with head positioning in patients undergoing thyroidectomy


Department of Anaesthesiology, MES Medical College and Hospital, Malappuram, Kerala, India

Date of Submission01-Mar-2022
Date of Decision10-May-2022
Date of Acceptance17-May-2022
Date of Web Publication14-Jun-2022

Correspondence Address:
Dr. Melveetil S Sreejit
Department of Anaesthesiology, MES Medical College and Hospital, Malaparambu, Palachode Post, Perinthalmanna, Malappuram - 679 338, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aer.aer_42_22

Rights and Permissions
   Abstract 

Background and Aims: There are possibilities of insufficiency in blood flow through carotid arteries during head positioning in thyroid surgeries under general anesthesia which is usually compensated by collateral circulation in normal conditions. This compensation may be hampered in patients with congenital abnormalities or diseases such as atherosclerosis. We aimed to elucidate the changes in common carotid artery blood flow related to head positioning during thyroid surgery by Doppler examination. Methods: In this observational prospective study, Doppler examination of both common carotid arteries including arterial diameter, peak systolic velocity, average velocity, and blood flow volume of forty patients who had undergone elective thyroidectomy under endotracheal anesthesia was done. Three sets of data (baseline, after induction, and after surgery) were collected and analyzed. Results: There was a significant reduction in the diameter (P = 0.002) and the blood flow (P = 0.0001) in both carotid arteries and an increase in peak and mean velocity which was more pronounced immediately after head positioning and persisted till the end of the procedure. There was no correlation between the hemodynamic parameters with the carotid artery diameter, blood flow, and velocity. Conclusions: The head-and-neck positioning during thyroidectomy surgery reduces the blood flow through the carotid arteries which continued till the end of the procedure.

Keywords: Carotid blood flow, carotid diameter, Doppler, thyroidectomy


How to cite this article:
Asokan A, Sreejit MS. Carotid artery blood flow changes associated with head positioning in patients undergoing thyroidectomy. Anesth Essays Res 2022;16:49-53

How to cite this URL:
Asokan A, Sreejit MS. Carotid artery blood flow changes associated with head positioning in patients undergoing thyroidectomy. Anesth Essays Res [serial online] 2022 [cited 2022 Sep 24];16:49-53. Available from: https://www.aeronline.org/text.asp?2022/16/1/49/347510


   Introduction Top


Thyroidectomy is one of the most common endocrine surgeries done worldwide. In thyroid surgeries, the positioning of the head is done for better surgical exposure and for the benefit of the procedure itself.[1] A shoulder roll is placed at the level of the acromion process of the scapula to help extend the neck. Due to the reduced neck muscle tone as a result of general anesthesia, the danger of hyperextension or overrotation of the neck is anticipated. The positioning of the head and neck during thyroid surgeries is performed with utmost care and caution in a step-by-step manner and in the presence of vigilant and skillful hands.

Carotid artery occlusions and dissections are reported when careful measures are not taken to avoid excessive head rotation or neck extension.[2] There are possibilities of insufficiency in blood flow through carotid arteries during head positioning which is usually compensated by collateral circulation in normal conditions. This compensation may be hampered in patients with congenital abnormalities or diseases such as atherosclerosis. Furthermore, sustained intraoperative hypotension may worsen the situation.

The contrasting outcomes shown in the studies which analyzed the association between the head positioning and the hemodynamics in the blood vessels of the head and neck[3],[4] make this area more research worthy.[5],[6] In the present study, we aimed to determine the changes in the common carotid artery blood flow on head positioning during thyroidectomy under general anesthesia by Doppler examination.


   Methods Top


The study was commenced after obtaining approval from the Institutional Ethics Committee (IEC/MES/54/2018 dated November 19, 2018). Written and informed consent was obtained from the patients who participated in the study. The study design was an observational prospective study.

A previous study by Saraçoğlu et al.[3] studied the effects of head rotation on carotid blood flow. Assuming 30% difference, at a two-sided Type 1 error of 0.05 and power of 90%, a sample size of 40 patients was arrived at. Forty adult patients of either gender between 18 and 50 years of age belonging to the American Society of Anesthesiologists (ASA) physical status I or II as outlined by the ASA, with normal levels of thyroid hormones coming for elective thyroidectomy requiring endotracheal anesthesia, were included in the study. Patients with anemia, uncontrolled hypertension, uncontrolled diabetes mellitus, metabolic disorders, vascular diseases such as atherosclerosis and stenosis, and intracranial pathologies were excluded from this study.

Preoperative assessment was performed by a senior resident in anesthesiology which included a detailed history, general physical examination, and systemic examination. Basic investigations were done which included complete blood count, blood grouping with Rh typing, random blood sugar, serum urea and creatinine, serum electrolytes, electrocardiography (ECG), chest X-ray, and an echocardiogram if indicated.

Patients were premedicated with oral diazepam (5 mg if they weighed <50 kg and 10 mg if they weighed more than 50 kg) on the night before and on the morning of surgery. The patients were kept nil per oral for both solids and liquids as per the ASA guidelines. After shifting the patients into the operating room, the following monitoring was established:

  • ECG
  • Noninvasive blood pressure
  • Pulse oximetry (SpO2).


Baseline values of heart rate, blood pressure, and SpO2 were recorded by the postgraduate performing the study (observer 1). An intravenous line was secured on the upper limb using an 18-gauge cannula. The carotid Doppler examination was done using a SonoSite M-Turbo ® ultrasound system with 13–6 MHz, HFL38 probe by the anesthesia consultant specialized in ultrasonography (observer 2). The patient was positioned supine with the head rotated 45° away from the side to be examined. The carotid measurements were carried out on the intraluminal vertical plane between the echogenic intimal layers of the common carotid artery 2 cm before its bifurcation on either side. The following Doppler data of the common carotid arteries were observed.

  • Arterial diameter (D)
  • Peak systolic velocity (PV)
  • Average velocity (TAMEAN, time-averaged mean velocity)
  • Blood flow volume (Vol).


After taking the above measurements, patients were premedicated with intravenous injections of midazolam (0.05 mg.kg−1) and glycopyrrolate (0.01 mg.kg−1). This was followed by preoxygenation with 100% oxygen for 3 min. Anesthesia was induced by the anesthesia consultant in charge of the case (observer 3) using fentanyl 2 μg.kg−1 (rounded off to the nearest multiple of 25 μg) and propofol 2.5 mg.kg−1 (rounded off to the nearest multiple of 10 mg). Patients were paralyzed with intravenous vecuronium bromide 0.08 mg/kg and tracheal intubation was performed 3 min later by observer 3. A shoulder roll was placed at the level of the acromion process of the scapula of the patient to help extend the neck. The head was adequately supported to avoid hyperextension of the neck.

The carotid Doppler examinations were repeated twice by observer 2.

  • After head positioning
  • At the end of the surgery before the thyroidectomy position was neutralized.


The Doppler data were recorded as mentioned earlier. Hemodynamic monitoring of the patient at regular intervals was done by observer 1.

The statistical analysis was performed using the SPSS 17.0 (Statistical Package for the Social Science Statistics for windows; Version 17.0, SPSS Inc., Chicago, Illinois, USA). The average, standard deviation, ratio, and frequency values were used for descriptive statistics; data distribution was examined using the Kolmogorov‒Smirnov test, and analysis of variance was used for the analysis of quantitative data. The correlation was analyzed with the Pearson correlation test. P < 0.05 will be considered statistically significant.


   Results Top


[The data of 40 subjects were analyzed. Demographic data including the length of surgery and anesthesia are presented in [Table 1]]. A decrease in mean arterial pressure and heart rate was observed compared to the baseline value which continued to the end of the operation [Table 2].
Table 1: Demographic data

Click here to view
Table 2: Hemodynamic data

Click here to view


The evaluation of the Doppler data revealed carotid diameter [Table 3] and volume of blood flow [Table 4] decreased significantly at the end of the operation compared to the baseline measurement. Whereas, both peak systolic [Figure 1] and average velocities [Figure 2] showed a slight, but significant raise (P < 0.05).
Figure 1: Values of peak systolic velocity

Click here to view
Figure 2: Values of mean velocity

Click here to view
Table 3: Common carotid artery diameter in the preoperative period, postinduction, and postprocedure at the end of surgery

Click here to view
Table 4: Volume of blood flow in the common carotid arteries in the preoperative period, postinduction, and postprocedure at the end of surgery

Click here to view


Mean arterial pressure and heart rate were not found to be correlated with the changes that occurred in the values of the diameter of the left and right common carotid arteries after induction and at the end of the surgery in comparison with the baseline values [Table 5] and [Table 6].
Table 5: The correlation between the changes in carotid artery diameters with blood pressure and heart rate at the preoperative period, postinduction, and at the end of surgery

Click here to view
Table 6: The correlation between the changes in blood flow volumes with blood pressure and heart rate at the preoperative period, postinduction, and at the end of surgery

Click here to view



   Discussion Top


The present study was designed to examine the effects of head extension on the patients undergoing thyroidectomy operation. Here, we assessed the changes in the blood flow volume, carotid diameter, and mean velocities in the common carotid arteries on either side at different stages using Doppler ultrasound and found them to be adversely affected by the head positioning for thyroidectomy. After induction and positioning, a significant decrease was observed in these values compared to the baseline measurements. At the end of the surgery, the Doppler data of the carotid diameter and flow volume showed significantly decreased values. Whereas, both peak systolic and average velocities showed a slight, but significant raise. The results were similar to the study conducted in 28 patients at Istanbul School of Medicine by Ayten Saraçoğluetal who found out that, at the end of the operation, peak systolic velocity, average velocity, and blood flow volume of the common carotid artery decreased significantly compared to the baseline measurement (P < 0.001).[3]

No correlations were found between the changes in blood pressure, heart rate, and change in the carotid blood flow at the end of the surgery in comparison with the baseline values. This points toward the head positioning as the factor behind the decreased blood flow volumes rather than blood pressure changes.

The present study included forty adult patients of either gender between 18 and 50 years of age belonging to the ASA physical status I or II as outlined by the ASA, with normal levels of thyroid hormones coming for elective thyroidectomy requiring endotracheal anesthesia. They were free of systemic hypertension, hyperlipidemia, diabetes mellitus, cerebrovascular insufficiency, vertebrobasilar failure, metabolic diseases, or any intracranial pathology. The present study indicated that there was a 5% decrease (P < 0.05, which was significant enough) in carotid blood flow volume at the end of the surgery when compared to the baseline measurement. However, this magnitude of decrease in blood flow may lead to serious complications in elderly patients with hyperlipidemia, vertebrobasilar failure, or carotid plaques, so this should be taken into consideration.

Decreased carotid blood flow may lead to reduced cerebral blood flow and subsequently cerebral hypoxemia and ischemia.[4] This decrease has an exaggerated effect in cases of low cardiac output due to an unexpected intraoperative blood loss, or in an event of thromboembolism and in cases where both head extension and controlled hypotension are simultaneously applied again, if the patient has got low hemoglobin values, the already compromised oxygen-carrying capacity demanding higher arterial blood flow for adequate cerebral perfusion will further suffer.[3],[7]

In elderly patients with atherosclerosis, carotid plaques, or stenosis, this fall in carotid blood flow following head positioning may further compound the deficiency of the cerebral perfusion.

Intravenous anesthetic agents such as thiopentone and propofol and volatile anesthetics have neuroprotective effects against the damage that may develop as a result of cerebral ischemia;[8] however, caution must be taken into consideration while giving anesthesia in high-risk surgical patients to protect the central nervous system,[9] especially when head positioning is done. Anesthesiologists should allow only a moderate neck extension in such high-risk patients. Further studies are needed on the choice of anesthesia or anesthetic agents in potentially high-risk cases where there is a requirement of intraoperative neck rotation or extension.

Limitations of the study include the restriction of the field of study to the flow changes within both common carotid arteries realizing the fact that the analysis is not complete with cerebral oxygenation. The usage of transcranial Doppler measurements[10],[11] of both anterior and posterior cerebral circulation gives a better assessment of cerebral blood flow. Furthermore, the postoperative cognitive functions of the patients were not assessed. Such studies could have given a better understanding of the potential clinical complications of cerebral blood flow deficiency.


   Conclusions Top


The head-and-neck positioning during thyroidectomy surgery compromises the blood flow through the carotid arteries which continued till the end of the procedure irrespective of the hemodynamics.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Chintamani D. Editorial: “Ten commandments” of safe and optimum thyroid surgery. Indian J Surg 2010;72:421-6.  Back to cited text no. 1
    
2.
Villalba Martinez G, Navalpotro Gomez I, Serrano Perez L, Gonzalez Ortiz S, Fernández-Candil JL, Steinhauer EG. Surgical position, cause of extracranial internal carotid artery dissection, presenting as Pourfour Du Petit syndrome: Case report and literature review. Turk Neurosurg 2015;25:666-9.  Back to cited text no. 2
    
3.
Saraçoğlu A, Altun D, Yavru A, Aksakal N, Sormaz İC, Camcı E. Effects of head position on cerebral oxygenation and blood flow velocity during thyroidectomy. Turk J Anaesthesiol Reanim 2016;44:241-6.  Back to cited text no. 3
    
4.
Fudickar A, Leiendecker J, Köhling A, Hedderich J, Steinfath M, Bein B. Transcranial Doppler sonography as a potential screening tool for preanaesthetic evaluation: A prospective observational study. Eur J Anaesthesiol 2012;29:471-6.  Back to cited text no. 4
    
5.
Licht PB, Christensen HW, Høilund-Carlsen PF. Carotid artery blood flow during premanipulative testing. J Manipulative Physiol Ther 2002;25:568-72.  Back to cited text no. 5
    
6.
Mitchell J. Vertebral artery blood flow velocity changes associated with cervical spine rotation: A meta-analysis of the evidence with implications for professional practice. J Man Manip Ther 2009;17:46-57.  Back to cited text no. 6
    
7.
Kalogeridis K, Metaxioti E, Dalampyra F, Papagiannopoulou P, Zotou V, Costoglou C. Head position during thyroidectomy, under general anesthesia, reduces regional cerebral oxygen saturation. Eur J Anaesthesiol 2012;29:26-7.  Back to cited text no. 7
    
8.
Malo-Urries M, Tricas-Moreno JM, Lucha-Lopez O, Estebanez-de-Miguel E, Hidalgo-Garcia C, Perez-Guillen S. Vertebral and internal carotid artery flow during vascular premanipulative testing using duplex Doppler ultrasound measurements: A systematic review. IJOM 2012;15:103-10.  Back to cited text no. 8
    
9.
Blacker DJ, Flemming KD, Wijdicks EF. Risk of ischemic stroke in patients with symptomatic vertebrobasilar stenosis undergoing surgical procedures. Stroke 2003;34:2659-63.  Back to cited text no. 9
    
10.
Kalmar AF, Dewaele F, Foubert L, Hendrickx JF, Heeremans EH, Struys MM, et al. Cerebral haemodynamic physiology during steep Trendelenburg position and CO(2) pneumoperitoneum. Br J Anaesth 2012;108:478-84.  Back to cited text no. 10
    
11.
Sultan MJ, Hartshorne T, Naylor AR. Extracranial and transcranial ultrasound assessment in patients with suspected positional 'vertebrobasilar ischaemia'. Eur J Vasc Endovasc Surg 2009;38:10-3.  Back to cited text no. 11
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Methods
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed313    
    Printed13    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal